Features for Audio Classification
نویسندگان
چکیده
Four audio feature sets are evaluated in their ability to differentiate five audio classes: popular music, classical music, speech, noise and crowd noise. The feature sets include low-level signal properties, mel-frequency spectral coefficients, and two new sets based on perceptual models of hearing. The temporal behavior of the features is analyzed and parameterized and these parameters are included as additional features. Using a standard Gaussian framework for classification, results show that the temporal behavior of features is important for automatic audio classification. In addition, classification is better, on average, if based on features from models of auditory perception rather than on standard features.
منابع مشابه
نهانکاوی صوت مبتنی بر همبستگی بین فریم و کاهش بازگشتی ویژگی
Dramatic changes in digital communication and exchange of image, audio, video and text files result in a suitable field for interpersonal transfers of hidden information. Therefore, nowadays, preserving channel security and intellectual property and access to hidden information make new fields of researches naming steganography, watermarking and steganalysis. Steganalysis as a binary classifica...
متن کاملMirex 2008 Audio Music Classification Using a Combination of Spectral, Timbral, Rhythmic, Temporal and Symbolic Features
The novel approach of combining audio and symbolic features for music classification from audio enhanced previous audio-only based results in MIREX 2007. We extended the approach by including temporal audio features, enhancing the polyphonic audio to MIDI transcription system and including an extended set of symbolic features. Recent research in music genre classification hints at a glass ceili...
متن کاملMirex 2009 a Multi-feature-set Multi-classifier Ensemble Approach for Audio Music Classification
The approach of combining a multitude of audio features and also symbolic features (through transcription of audio to MIDI) for music classification proved useful, as shown previously. We extended the system submitted to MIREX 2008 by including temporal audio features, adding another audio analysis algorithm based on finding templates on music, enhancing the polyphonic audio to MIDI transcripti...
متن کاملLabrosa’s Audio Classification Submissions
We have submitted a system to MIREX 2008’s audio music classification tasks. It employs the spectral features described in [2] in addition to novel stereo-based features. For the n-way audio classification tasks (artist, classical composer, genre, latin genre, and mood identification) it uses a DAGSVM to perform classification. For the tag classification task, it uses a simple binary SVM with P...
متن کاملبازشناسی خودکار حالت عاطفی مبتنی بر تغییرات فیزیولوژیک
Recently, automatic affective state recognition has been noteworthy for improving Human Computer Interaction (HCI), clinical researches and other various applications. Little attention has been paid so far to physiological signals for affective state recognition compared to audio-visual methods. Different affective states stimulate the Autonomic Nervous System (ANS) and lead to changes in physi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002